An Insight into Quasi-Two-Dimensional Flow Features Over Turbine Blading From the Works of Jonathan Paul Gostelow

Author:

Rona Aldo1,Adebayo David S.2,Gostelow Jonathan Paul1

Affiliation:

1. University of Leicester School of Engineering, , Leicester LE1 7RH , UK

2. University of Wolverhampton Faculty of Science and Engineering, , Telford Innovation Campus Shifnal Road, Priorslee, Telford, Shropshire TF2 9NT , UK

Abstract

Abstract The flow through the predominantly two-dimensional geometries of cascades of blades is intrinsically three-dimensional and unsteady. Direct Numerical Simulation, Large Eddy Simulations, and time-resolved Particle Image Velocimetry provide access to the full flow physics, relevant to aerodynamic loss and heat management. Such studies build upon earlier insight drawn from quasi-two-dimensional investigations that identified the key areas where progress in understanding was most needed. These areas stretch across the full passage, from the leading edge of the blade to the passage outflow. Streamwise surface vorticity, transition, the calmed region, shock–boundary layer interaction, and vortex shedding are considered in detail, specifically (i) on what gaps in their physical understanding the works of Jonathan Paul Gostelow exposed and (ii) what gaps were present in the two-dimensional computational approaches used to represent these flows in these works. These useful insights are obtained from the geometrically simpler settings of circular cylinders in cross-flow and from flat plate experiments, as well as from cascades of blades. This paper presents an overview of the physical understanding of the flow features that underpins the more recent time-resolved three-dimensional investigations, led by the late Emeritus Professor Jonathan Paul Gostelow. This work celebrates some of Paul Gostelow’s 50 + years of turbomachinery research achievements and develops awareness about their significance toward reaching a more complete knowledge of the flow physics in turbomachinery, using the more recent time-resolved three-dimensional modeling capability of Computational Fluid Dynamics.

Funder

Engineering and Physical Sciences Research Council

Publisher

ASME International

Subject

Mechanical Engineering

Reference71 articles.

1. Potential Flow Through Cascades a Comparison Between Exact and Approximate Solutions;Gostelow,1965

2. Review of Compressible Flow Theories for Airfoil Cascades;Gostelow;J. Eng. Power,1973

3. Some Issues and Developments in Analytical and Experimental Work on Turbine Blade Flows;Gostelow,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3