An Analysis of Primary Creep of Nickel-Base Superalloy Single Crystals

Author:

Paslay P. R.1,Wells C. H.2,Leverant G. R.2

Affiliation:

1. Division of Engineering, Brown University, Providence, R. I.

2. Advanced Materials Research and Development Laboratory, Pratt & Whitney Aircraft, Middletown, Conn.

Abstract

The orientation and stress dependence of the primary creep rate in single crystals of a nickel-base superalloy is predicted from crystallographic deformation mechanisms. An experimentally determined relationship between the deformation rate and applied stress is employed to calculate the independent contributions of each of the possible slip systems to the strain rate. Calculations were made for single crystals of a nickel-base superalloy tested in tensile creep at 1400 deg F, at which temperature the active slip planes are known to be {111}, and the slip directions either 〈110〉 or 〈112〉 at high or low strain rates, respectively. Comparison with measured primary creep rates showed the 〈110〉 contribution to be negligible and that while semi-quantitative agreement with the 〈112〉 analysis was obtained, an accurate prediction of creep rates may require inclusion of strain hardening in the analysis.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3