Heat Transfer Enhancement Characteristics of Al2O3/Water and CuO/Water Nanofluids in a Tube in Tube Condenser Fitted With an Air Conditioning System—An Experimental Comparison

Author:

Chandraprabu V.1,Sankaranarayanan G.2,Iniyan S.3,Suresh S.4

Affiliation:

1. Assistant Professor Department of Mechanical Engineering, K. S. Rangasamy College of Technology, Tiruchengode - 637251 Tamil Nadu, India e-mail:

2. Professor Department of Mechanical Engineering, Sri Muthukumaran Institute of Technology, Chennai, Tamil Nadu, India e-mail:

3. Professor Department of Mechanical Engineering, Anna University, Chennai, Tamil Nadu, India e-mail:

4. Assistant Professor Department of Mechanical Engineering, National Institute of Technology, Trichy, Tamil Nadu, India e-mail:

Abstract

In this study, heat transfer performance of nanofluids (Al2O3/water and CuO/water nanofluid) is experienced by using the condensing unit of an air conditioner. Nanoparticles at 30 nm are suspended at various volume concentrations (1%, 2%, 3%, and 4%) in the base fluid are produced for this current work. The nanofluids, considered as a cooling fluid, flow in the outer side of the tube of condenser, and general working condition of the air conditioner is applied for the investigation. Experimental results highlight the enhancement of heat transfer rate because of the existence of nanoparticles in the fluid. Two nanofluids show better heat transfer rate than does the base fluid. The Nusselt numbers for CuO/water and Al2O3/water nanofluids are enhanced up to 39.48% and 33.86%, respectively. The findings show that CuO/water nanofluids exhibit better heat transfer rate than Al2O3/water nanofluids.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3