Affiliation:
1. Center for Excellence in DYNA3D Analysis, Department of Aerospace Engineering and Engineering Mechanics, Uiniversity of Cincinnati, Cincinnati, OH 45221-0070
Abstract
This paper presents two newly developed micromechanical models for the analysis of plain weave fabric composites. Both models utilize the representative volume cell approach. The representative unit volume of the woven lamina is divided into subcells of homogeneous material. Starting with the average strains in the representative volume cell and based on continuity requirements at the subcell interfaces, the strains and stresses in the composite fiber yarns and matrix are determined as well as the average stresses in the lamina. Equivalent homogenized material properties are also determined. In their formulation the developed micromechanical models take into consideration all components of the three-dimensional strain and stress tensors. The performance of both models is assessed through comparison with available results from other numerical, analytical, and experimental approaches for composite laminae homogenization. The very good accuracy together with the simplicity of formulation makes these models attractive for the finite element analysis of composite laminates.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
61 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献