Grinding Mechanisms and Strength Degradation for Ceramics

Author:

Malkin S.1,Ritter J. E.1

Affiliation:

1. Department of Mechanical Engineering, University of Massachusetts, Amherst, MA 01003

Abstract

This paper presents a critical review and evaluation of our fundamental knowledge of the grinding mechanisms for ceramic materials and their influence on the finished surface and mechanical properties. Two main research approaches are identified: a “machining” approach and an “indentation fracture mechanics” approach. The machining approach has typically involved measurement of the grinding forces and specific energy coupled with microscopic observations of the surface morphology and grinding detritus. Any proposed mechanisms of abrasive-workpiece interaction must be consistent with the magnitude of the specific energy and its dependence on the grinding conditions. The “indentation fracture mechanics” approach assumes that the damage produced by grinding can be modeled by the idealized flaw system produced by a sharp indentor. Indentation of a ceramic body is considered to involve elastic/plastic deformation with two principal crack systems propagating from the indentation site: lateral cracks which lead to material removal and radial/median cracks which cause strength degradation. Each of these approaches provides important insight into grinding behavior and strength degradation, but each has its shortcomings. Further efforts to develop a fundamental model for grinding of ceramics would benefit from the integration of both of these approaches.

Publisher

ASME International

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3