Numerical Investigation of Wake Interaction in a Low Pressure Turbine

Author:

Eulitz Frank1,Engel Karl1

Affiliation:

1. DLR - Institute for Propulsion Technology, Cologne, Germany

Abstract

A time-accurate Reynolds-averaged Navier-Stokes solver has been extended for a phenomenological study of wake/bladerow interaction in a low pressure turbine near midspan. To qualitatively account for unsteady laminar-turbulent boundary layer transition, a variant of the Abu-Ghanam Shaw transition correlation has been coupled with the Spalart-Allmaras one-equation turbulence model. The method is shown to be capable of capturing separated-flow and wake-induced transition, as well as becalming and relaminarization effects. The model turbine investigated consists of three stator and two rotor rows. Instantaneous Mach number and eddy-viscosity plots are presented to monitor the wake migration and interaction with downstream boundary layers. Especially on the suction sides, very large fluctuations of the skin friction coefficient are observed. Effects of the near and far wakes are identified.

Publisher

American Society of Mechanical Engineers

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3