An Experimental Investigation of Rotor–Box Aerodynamic Interaction1

Author:

Shukla Dhwanil1,Komerath Narayanan2

Affiliation:

1. School of Aerospace Engineering,Georgia Institute of Technology,Atlanta, GA 30318e-mail: dhwanil.shukla@gatech.edu

2. ProfessorSchool of Aerospace Engineering,Georgia Institute of Technology,Atlanta, GA 30318e-mail: komerath@gatech.edu

Abstract

Abstract Multirotor unmanned aerial vehicles (UAVs) are a promising means of package delivery. Such applications generally involve carrying bulky payloads under the vehicle. Understanding the aerodynamic interaction effects of payloads on the vehicle is the key to design such systems, in the low Reynolds number regime of small UAVs. High-speed particle image velocimetry (PIV), force, and torque measurements have been used with a rotor and a cubic box to investigate the rotor–box interactions and configurations typical of multirotor UAVs. The observed rotor and vehicle performance trends are explained by the mean flow field captured through PIV. Conditions similar to ground-effect operation are developed for the rotor at a high level of rotor-box overlap. A slight improvement in the vehicle performance is observed at conditions where the box is just out of the rotor wake. Some basic instantaneous flow phenomena due to rotor–box interaction have been identified. The interactions have been classified into three distinct modes based on observations at a range of box positions relative to the rotor. An empirical tip vortex trajectory model for isolated rotors is found to be instrumental in predicting the interaction mode at a given box position.

Publisher

ASME International

Subject

Mechanical Engineering

Reference26 articles.

1. Africa Leads the World on Drone Delivery: Flights to Begin in Tanzania in 2018

2. Worlds First Drone Delivery Service Launches in Iceland

3. An Unsteady Helicopter Rotor-Fuselage Aerodynamic Interaction Analysis;J. Am. Helicopter Soc.,1990

4. Evaluation of Isolated Fuselage and Rotor-Fuselage Interaction Using CFD,2004

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3