Affiliation:
1. School of Engineering and Applied Sciences, The University of Sussex, Falmer, Brighton, BN1 9QT, U.K.
Abstract
The state variable filter method of parametric identification is applied in the determination of squeeze-film dynamic coefficients from forced excitation tests on an experimental rig. The experimental squeeze-film damper had a centralizing spring, a central circumferential oil feed groove, and no end seals. Forced excitation tests are recorded at various journal support system natural frequencies and at different journal eccentricities. From these tests, estimates of the direct squeeze-film damping, stiffness and inertial coefficients are derived and presented. These results are shown to be in good agreement with results recently obtained using an independent frequency domain technique. The experimental damping and inertial coefficients were found to be considerably larger than values predicted by conventional short-bearing theory, but relatively insensitive to the support system’s natural frequency (and the forcing frequency) for most of the range investigated. The fluid film stiffness coefficient values at low values of the system’s natural frequency agreed with results from static stiffness tests. Two geometrically identical journals were used, one of steel and one of a low-weight, magnesium alloy. The use of the low weight journal markedly reduced the scatter in the inertial and film stiffness coefficients.
Subject
Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献