Pressure Drop in Solar Power Plant Chimneys

Author:

von Backstro¨m Theodor W.1,Bernhardt Andreas1,Gannon Anthony J.1

Affiliation:

1. Department of Mechanical Engineering, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa

Abstract

The paper investigates flow through a representative tall solar chimney with internal bracing wheels. It presents experimental data measured in a 0.63-m-dia model chimney with and without seven bracing wheels. The bracing wheels each had a rim protruding into the chimney and 12 spokes, each spoke consisting of a pair of rectangular section bars. The investigation determined coefficients of wall friction, bracing wheel loss, and exit kinetic energy in a model chimney, for both ideal non-swirling uniform flow and for swirling distorted flow. A fan at one end of the chimney model either sucked or blew the flow through it. The flow entering the chimney through the fan and its diffuser simulated the flow leaving the turbine at the bottom of the chimney. The swirling distorted flow increased the total pressure drop by about 28%, representing 4.7% of the turbine pressure drop. The pressure drop across the bracing wheels exceeded the frictional pressure drop by far. Designers of tall, thin-walled chimneys should take care to minimize the number of bracing wheels, reduce their rim width as much as possible, and investigate the feasibility of streamlining their spoke sections. If at all structurally possible, the top bracing wheel should be far enough from the chimney exit to allow the spoke wakes to decay and the separated flow to re-attach to the chimney wall downstream of the rims before the flow leaves the chimney, to reduce the exit kinetic energy loss.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3