Affiliation:
1. Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan 300, Republic of China
Abstract
This paper presents an analytical and experimental investigation on the dynamic behavior of the band/wheel mechanical system of an industrial metal-cutting band saws. In practice, this machine is equipped with two pairs of roller bearings to twist the saw blade perpendicularly to the surface of the workpiece. This results in the existence of the wheel tilt angle. The saw band is modeled as a finite moving beam span that composes three consecutive segments: the middle straight segment, that is, the cutting span, and the neighboring two segments that are considered as twisted beams. The deformation of the band must satisfy the continuity condition at the connections between segments. The equations of motion governing the dynamic behavior of the saw band in axial, torsional and transverse directions are derived using mixed variational principle. The axial motion of the span couples linearly with its torsional motion. The dynamic responses and the natural frequencies of the beam are computed when parameters vary, such as the transport velocity of the saw band, initial tension, wheel tilt angle, and the length of the cutting span. Finally, an experimental study is performed on an industrial band saw for the verification of the mathematical model and the predictive capability proposed in this investigation. Favorable comparisons between the analytical and experimental results are obtained.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献