Sparse Identification of Nonlinear Dynamics-Based Feature Extraction for Data Driven Model Predictive Control of a Buck Boost Switch Mode Power Supply

Author:

Mallamo Declan P.1,Azarian Michael H.1,Pecht Michael G.1

Affiliation:

1. Center for Advanced Life Cycle Engineering (CALCE), University of Maryland , College Park, MD 20742

Abstract

Abstract This paper presents two methods of creating model predictive control (MPC) strategies for efficient real-time control algorithms for power electronics. Two novel methods of performing nonlinear modeling are presented in this research, the first being novel Takagi-Sugeno model, which combines two linear state space models using a membership function to model the nonlinear transitions between operating points. The second method involves using sparse identification of nonlinear dynamics (SINDy), a nonlinear modeling technique that uses L1 regularization of least squares for time-series data to define a parsimonious polynomial function set. This set is used to define the input feature space to extended dynamic mode decomposition (DMD) with control. These models are then used for data-driven model predictive control of a buck switch mode power supply to find the optimal duty cycle that regulates the output voltage over a finite tuned proportional integral derivative (PID) controller. Numerical accuracy challenges are discussed, and strategies are offered for their mitigation.

Publisher

ASME International

Reference18 articles.

1. Identification of Failure Mechanisms to Enhance Prognostic Outcomes;J. Failure Anal. Prev.,2012

2. Failure Analysis of Capacitors and Inductors,2019

3. Model Predictive Heuristic Control: Application to Industrial Processes;Automatica,1978

4. Application of Generalized Predictive Control to Industrial Processes;IEEE Control Syst. Mag.,1988

5. On the Optimal Control of Switch-Mode dc-dc Converters,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3