Affiliation:
1. National Institute of Standards and Technology, Building 226, Room B114, Gaithersburg, MD 20899
Abstract
This paper quantifies the influence of copper (II) oxide (CuO) nanoparticle concentration on the boiling performance of R134a/polyolester mixtures on a roughened horizontal flat surface. Nanofluids are liquids that contain dispersed nanosize particles. Two lubricant-based nanofluids (nanolubricants) were made with a synthetic polyolester and 30 nm diameter CuO particles to 1% and 0.5% volume fractions, respectively. As reported in a previous study for the 1% volume fraction nanolubricant, a 0.5% nanolubricant mass fraction with R134a resulted in a heat transfer enhancement relative to the heat transfer of pure R134a/polyolester (99.5/0.5) between 50% and 275%. The same study had shown that increasing the mass fraction of the 1% volume fraction nanolubricant resulted in smaller, but significant, boiling heat transfer enhancements. The present study shows that the use of a nanolubricant with half the concentration of CuO nanoparticles (0.5% by volume) resulted in either no improvement or boiling heat transfer degradations with respect to the R134a/polyolester mixtures without nanoparticles. Consequently, significant refrigerant/lubricant boiling heat transfer enhancements are possible with nanoparticles; however, the nanoparticle concentration is an important determining factor. Further research with nanolubricants and refrigerants is required to establish a fundamental understanding of the mechanisms that control nanofluid heat transfer.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
52 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献