Affiliation:
1. Department of Civil Engineering, State University of New York at Buffalo, Buffalo, NY 14260
Abstract
Several recently developed boundary element formulations for time-dependent convective heat diffusion appear to provide very efficient computational tools for transient linear heat flows. More importantly, these new approaches hold much promise for the numerical solution of related nonlinear problems, e.g., Navier–Stokes flows. However, the robustness of these methods has not been examined, particularly for high Peclet number regimes. Here, we focus on these regimes for two-dimensional problems and develop the necessary temporal and spatial integration strategies. The algorithm takes advantage of the nature of the time-dependent convective kernels, and combines analytic integration over the singular portion of the time interval with numerical integration over the remaining nonsingular portion. Furthermore, the character of the kernels lets us define an influence domain and then localize the surface and volume integrations only within this domain. We show that the localization of the convective kernels becomes more prominent as the Peclet number of the flow increases. This leads to increasing sparsity and in most cases improved conditioning of the global matrix. Thus, iterative solvers become the primary choice. We consider two representative example problems of heat propagation, and perform numerical investigations of the accuracy and stability of the proposed higher-order boundary element formulations for Peclet numbers up to 105.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献