Application of Hilbert–Huang Transform With Improved Ensemble Empirical Mode Decomposition in Nonlinear Flight Dynamic Mode Characteristics Estimation

Author:

Mokhtari S. Abolfazl.1,Sabzehparvar Mehdi.2

Affiliation:

1. Aerospace Engineering Department, Amirkabir University, Hafez Avenue, Tehran 15875-4413, Iran

2. Aerospace Engineering Department, Amirkabir University, 424 Hafez Avenue, Tehran 15875-4413, Iran e-mail:

Abstract

Identification of aircraft flight dynamic modes has been implemented by adopting highly nonlinear flight test data. This paper presents a new algorithm for identification of the flight dynamic modes based on Hilbert–Huang transform (HHT) due to its superior potential capabilities in nonlinear and nonstationary signal analysis. Empirical mode decomposition and ensemble empirical mode decomposition (EEMD) are the two common methods that apply the HHT transform for decomposition of the complex signals into instantaneous mode frequencies; however, experimentally, the EMD faces the problem of “mode mixing,” and EEMD faces with the signal precise reconstruction, which leads to imprecise results in the estimation of flight dynamic modes. In order to overcome (handle) this deficiency, an improved EEMD (IEEMD) algorithm for processing of the complex signals that originate from flight data record was introduced. This algorithm disturbing the original signal using white Gaussian noise, IEEMD, is capable of making a precise reconstruction of the original signal. The second improvement is that IEEMD performs signal decomposition with fewer number of iterations and less complexity order rather than EEMD. This algorithm has been applied to aircraft spin maneuvers flight test data. The results show that implication of IEEMD algorithm on the test data obtained more precise signal extractions with fewer iterations in comparison to EEMD method. The signal is reconstructed by summing the flight modes with more accuracy respect to the EEMD. The IEEMD requires a smaller ensemble size, which results in saving of a significant computational cost.

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3