Design and Computational Fluid Dynamics Analysis of a Novel Compact Mixing Chamber in Blast Furnace Ironmaking

Author:

Dutta Tanmay1

Affiliation:

1. Department of Mining Machinery Engineering, IIT (ISM) Dhanbad, Dhanbad 826004, India

Abstract

Abstract Homogeneous mixing of hot air from the hot blast stove with suitable quantity of cold air in a mixing chamber is very essential to maintain uniform temperature of hot air at all tuyers of a blast furnace. Proper design of the mixing chamber is very important for stable and efficient operation of blast furnace, lower energy consumption, and lower carbon dioxide emission. Comprehensive understanding of the physics of the mixing process is very essential for efficient design of the mixing chamber. In this paper, computational fluid dynamics (CFD) simulations are conducted to analyze the mixing of hot and cold air in a tangential cold gas inlet type and in a radial cold gas inlet type mixing chambers, which are commonly used in the industry. Results show that both types of mixing chamber produce very non-homogeneous mixture of cold and hot air despite having large mixing length in the long hot blast main. Also, design of a novel compact mixing chamber is presented and CFD analysis of this mixing chamber is conducted. The new mixing chamber is found to produce almost homogeneously mixed air stream within a very short length due to very high turbulence of the intensely swirling air flow. Also, the new mixing chamber is found to save large amount of high-quality thermal energy, which is wasted in the other two designs through the wall of the long hot blast main.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Reference17 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3