A Computer-Aided Cooling-Line Design System for Injection Molds

Author:

Turng L. S.1,Wang K. K.1

Affiliation:

1. Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853

Abstract

This paper presents a methodology for analyzing the heat-transfer process during the injection molding of plastics as an aid to mold design. A numerical scheme using the Boundary Element Method (BEM) with “zonal” approach has been developed to solve the quasi-steady temperature field and its normal derivative over the entire surface of the mold plates including the cavity wall as well as parting surface. In order to obtain a solution for the temperature field, a cycle-averaged heat-transfer coefficient is introduced from a transient heat-conduction analysis and applied as the boundary condition at the cavity surface. The numerical predictions as compared with the experimental data have shown that the cycle-averaged solution used in this study gives a reasonable representation of the transient temperature variation over the cavity surface. Based on the numerical predictions, the mold designer will be able to design a proper cooling-system for a mold to achieve better part quality and high productivity through more uniform cooling and shorter cycle time, respectively.

Publisher

ASME International

Subject

General Medicine

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3