Experimental and Numerical Investigation of Trailing Edge Film Cooling by Circular Coolant Wall Jets Ejected From a Slot With Internal Rib Arrays

Author:

Martini P.1,Schulz A.1,Wittig S.1

Affiliation:

1. Universita¨t Karlsruhe, Karlsruhe, Germany

Abstract

The present study concentrates on the experimental and computational investigation of a cooled trailing edge in a modern turbine blade. The trailing edge features a pressure side cutback and a slot, stiffened by two rows of evenly spaced ribs in an inline configuration. Cooling air is ejected through the slot and forms a cooling film on the trailing edge cutback region. In the present configuration the lateral spacing of the ribs equals two times their width. The height of the ribs, i.e. the height of the slot equals their width. Since the ribs are provided with fillet radii of half the slot height in size, circular coolant jets are exiting the slot tangentially to the trailing edge cutback. The adiabatic wall temperature mappings on the trailing edge cutback indicate that strong three-dimensional flow interaction between the coolant jets and the hot main flow takes place in such a way that two or more coolant jets coalesce depending on the blowing ratio. Experimental and numerical data to be presented in the present study include adiabatic film cooling effectiveness on the trailing edge cutback, the pressure distribution along the internal ribbed passage as well as slot discharge coefficients for different blowing ratios ranging from M = 0.35 to 1.1.

Publisher

ASMEDC

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3