Combustion Process Optimization Using Evolutionary Algorithm

Author:

Paschereit Christian Oliver1,Schuermans Bruno1,Bu¨che Dirk1

Affiliation:

1. Alstom (Switzerland), Ltd., Baden, Switzerland

Abstract

Flame stabilization in a swirl-stabilized combustor occurs in an aerodynamically generated recirculation region which is a result of vortex breakdown. The characteristics of the recirculating flow are dependent on the swirl number and on axial pressure gradients. Coupling to downstream pressure pulsations is also possible. Flame stability and emission formation depend on flow and mixing properties. The mixing properties of the investigated burner can be influenced by the position and the amount of fuel injection into the burner. The fuel injection is controlled by two different setups using (a) 8 proportional valves to adjust the mass flow for each fuel injector individually or using (b) 16 digital valves to include or exclude fuel injectors along the distribution holes. The objectives are the minimization of NOx emissions and the reduction of pressure pulsations of the flame. These two objectives are conflicting, affecting the environment and the lifetime of the combustion chamber, respectively. A multi-objective evolutionary algorithm is applied to optimize the combustion process. Each optimization run results in an approximation of the Pareto front by a set of solutions of equal quality, each representing a different compromise between the conflicting objectives. One compromise solution is selected with NOx emissions reduced by 30%, while mainaining the pulsation level of the given standard burner design. Chemiluminescence pictures of this solution showed that a more uniform distribution of heat release in the recirculation zone was achieved. The results were confirmed in high pressure single burner tests. The suggested fuel injection pattern has been successfully implemented in engines with sufficient stability margins and good operational flexibility. This paper shows the careful development process from lab scale tests to full scale pressurized tests.

Publisher

ASMEDC

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Robust combustor design based on flame transfer function modification;International Journal of Spray and Combustion Dynamics;2022-03

2. Machine Learning and Soft Computing Techniques for Combustion System Diagnostics and Monitoring: A Survey;Communications in Computer and Information Science;2021

3. Experimental study of NOx correlation for fuel staged combustion using lab-scale gas turbine combustor at high pressure;Experimental Thermal and Fluid Science;2014-10

4. Design for Thermo-Acoustic Stability: Procedure and Database;Journal of Engineering for Gas Turbines and Power;2013-09-23

5. Design for Thermo-Acoustic Stability: Modeling of Burner and Flame Dynamics;Journal of Engineering for Gas Turbines and Power;2013-09-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3