Temperature Measurement System for Low Pressure Ratio Turbine Testing

Author:

Va´zquez R.1,Sa´nchez J. M.1

Affiliation:

1. Industria de Turbo Propulsores, S.A., Madrid, Spain

Abstract

In 1999, ITP (Industria de Turbopropulsores, S.A.) launched a wide on-going research program focusing on new technologies to provide significant improvements in Low Pressure Turbines cost and weight. As consequence of the new technologies the experience limits are exceeded and new unknown concepts, like high stage loading turbines, must be explored and then a wide experimental work is required for validation purposes. Cold flow single stage rigs in high-speed facilities were selected by ITP as main vehicle to carry out the experimental validation. Single stage Low Pressure Turbine rigs have low-pressure ratio and power consumption, therefore efficiency predictions based on temperature drop require high accuracy thermocouple measurement systems (precision uncertainties lower than ±50 mK), if small efficiency variations must be captured. In this paper, a detailed uncertainty analysis is introduced and a temperature measurement system that allows achieving such high measurement accuracy is evaluated and described. Type T thermocouples are proposed for use in the range 0°C to 80°C, which are individually calibrated. The procedure followed for this calibration is presented and how is possible to achieve a precision of 30 mK. It is also shown as conventional UTR based on metal plates can behave as good as thermal baths in terms of temperature uniformity and errors, with the adequate isolation and temperature reference calibration. The conventional data recording and voltage measurement systems are experimentally evaluated, and they are found as main source of temperature errors. Although following some recommendations the precision of those systems can be improved, it is experimentally probed and therefore suggested the use of high accuracy voltmeter with a commutation unit to reduce significantly the temperature uncertainty. Finally a miniature Kiel Shroud is proposed and aerodynamically characterised in a high-speed facility. Mach, Reynolds number, yaw, blockage and manufacturing tolerance impact on recovery factor can be inferred from those results.

Publisher

ASMEDC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3