Active Flow Separation Control of a Stator Vane Using Surface Injection in a Multistage Compressor Experiment

Author:

Culley Dennis E.1,Bright Michelle M.1,Prahst Patricia S.2,Strazisar Anthony J.1

Affiliation:

1. NASA Glenn Research Center, Cleveland, OH

2. AP Solutions, Inc., Cleveland, OH

Abstract

Active flow control has been applied to the suction surface of stator vanes in a low speed axial compressor. Injection from the suction surface has been shown to reduce separation on vanes that were induced to separate by increasing the vane stagger angle by 3°. Various configurations were investigated including injector geometry (slots versus holes) and type of injection (steady versus unsteady). Unsteady injection was realized using two different approaches; external actuation through a high frequency valve and embedded actuation using a fluidic device internal to the vane. Using total pressure loss through the vane passage as a metric, reductions in area-averaged loss of 25% were achieved using injected massflow rates on the order of 1% of compressor through flow. The development of a tracking control algorithm was also explored for the purpose of closed-loop control. A reliable method of detecting surface separation was implemented using unsteady pressure measurements on the compressor casing near the vane suction surface.

Publisher

ASMEDC

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3