Large-Eddy Simulation of Atomizing Spray With Stochastic Modeling of Secondary Breakup

Author:

Apte Sourabh V.1,Gorokhovski Mikhael1,Moin Parviz1

Affiliation:

1. Stanford University, Stanford, CA

Abstract

Large-eddy simulation (LES) of reacting multi-phase flows in practical combustor geometries is essential to accurately predict complex physical phenomena of turbulent mixing and combustion dynamics. This necessitates use of Lagrangian particle-tracking methodology for liquid phase in order to correctly capture the droplet evaporation rates in the sparse-liquid regime away from the fuel injector. Our goal in the present work is to develop a spray-atomization methodology which can be used in conjuction with the standard particle-tracking schemes and predict the droplet-size distribution accurately. The intricate process of primary atomization and lack of detailed experimental observations close to the injector requires us to model its global effects and focus on secondary breakup to capture the evolution of droplet sizes. Accordingly, a stochastic model for LES of atomizing spray is developed. Following Kolmogorov’s idea of viewing solid particle-breakup as a discrete random process, atomization of liquid blobs at high relative liquid-to-gas velocity is considered in the framework of uncorrelated breakup events, independent of the initial droplet size. Kolmogorov’s discrete model of breakup is represented by Fokker-Planck equation for the temporal and spatial evolution of droplet radius distribution. The parameters of the model are obtained dynamically by relating them to the local Weber number. A novel hybrid-approach involving tracking of individual droplets and a group of like-droplets known as parcels is developed to reduce the computational cost and maintain the essential features and dynamics of spray evolution. The present approach is shown to capture the complex fragmentary process of liquid atomization in idealized and realistic Diesel and gas-turbine combustors.

Publisher

ASMEDC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3