A New Paradigm for Simulation of Turbulent Combustion in Realistic Gas Turbine Combustors Using LES

Author:

Constantinescu G.1,Mahesh K.2,Apte S.1,Iaccarino G.1,Ham F.1,Moin P.1

Affiliation:

1. Stanford University, Stanford, CA

2. University of Minnesota, Minneapolis, MN

Abstract

This paper presents a new paradigm for numerical simulation of turbulent combustion in realistic gas turbine combustors. Advanced CFD methods using Large Eddy Simulation (LES) turbulence models are central to this paradigm in fluid dynamics where engineers can apply the full predictive abilities of numerical simulations to the design of realistic gas turbine combustors. The use of LES models is motivated by their demonstrated superiority over RANS to predict turbulent mixing. The subgrid scale models incorporated in LES are based on the dynamic approach where the model coefficients are computed rather than prescribed by the user. This has provided unparalleled robustness to modern turbulent flow computations using LES. A new numerical algorithm was derived that is discretely energy conserving on hybrid unstructured grids, thus allowing numerical simulations at high Reynolds numbers corresponding to operating conditions without using artificial numerical dissipation. This paper deals specifically with the simulation of the gas phase flow through realistic gas turbine combustors and the implementation of combustion and spray models that are needed to predict and control the combustion phenomena in these geometries. Results from several simulations and comparison with experimental data are used to validate this approach. In particular, a complete simulation of the unsteady flow field in a realistic combustor geometry is carried out. Some preliminary results for reacting flow simulations in gas turbine combustors are also discussed. We discuss several challenges related to large-scale simulations of the flow in realistic combustors, including methods to further accelerate the algorithm’s convergence (e.g., use of multigrid techniques), improvement of the parallel performance of the flow solver for two-phase flow simulations (e.g., use of dynamic load balancing that accounts for the additional CPU time spent in the spray module when particles are present in the cells).

Publisher

ASMEDC

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Coarse Grid Projection Method for Accelerating Free and Forced Convection Heat Transfer Computations;Results in Mathematics;2020-01-29

2. Integrated RANS/LES Computations of an Entire Gas Turbine Jet Engine;45th AIAA Aerospace Sciences Meeting and Exhibit;2007-01-08

3. Integrated LES-RANS of an Entire High-Spool of a Gas Turbine;44th AIAA Aerospace Sciences Meeting and Exhibit;2006-01-09

4. A Framework for Coupling Reynolds-Averaged With Large-Eddy Simulations for Gas Turbine Applications;Journal of Fluids Engineering;2005-02-16

5. Coupled RANS-LES Computation of a Compressor and Combustor in a Gas Turbine Engine;40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit;2004-06-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3