Conjugate Flow and Heat Transfer Investigation of a Turbo Charger: Part II — Experimental Results

Author:

Bohn Dieter1,Moritz Norbert1,Wolff Michael1

Affiliation:

1. Aachen University, Aachen, Germany

Abstract

In this paper the results of experimental investigations are presented that were performed at the institute’s turbo charger test stand to determine the heat flux between the turbine and the compressor of a passenger car turbo charger. A parametric study has been performed varying the turbine inlet temperature and the mass flow rate. The aim of the analysis is to provide a relation of the Reynolds number at the compressor inlet and the heat flux from the turbine to the compressor with the turbine inlet temperature as the parameter. Thereto, the analysis of the local heat fluxes is necessary which is performed in a numerical conjugate heat transfer and flow analysis which is presented in part I of the paper. Beyond the measurements necessary to determine the operating point of compressor and turbine, the surface temperature of the casings were measured by resistance thermometers at different positions and by thermography. All measurement results were used as boundary conditions for the numerical simulation, i.e. the inlet and outlet flow conditions for compressor and turbine, the rotational speed, the oil temperatures and the temperature distribution on the outer casing surface of the turbo charger. The experimental results show that the total heat flux from turbine to compressor is mainly influenced by the turbine inlet temperature. The increase of the mass flow rate leads to a higher pressure ratio in the compressor so that the compressor casing temperature is increased. Due to the turbo charger’s geometry heat radiation has a small influence on the total heat flux.

Publisher

ASMEDC

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A numerical investigation of the effect of vaned diffuser water cooling on the internal flow field of a centrifugal compressor;Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy;2023-09-22

2. Numerical investigation on the effect of cold climate on the thermodynamic behavior and exergy distribution in the two-stage radial turbine;Applied Thermal Engineering;2023-03

3. Thermal Investigation of a Turbocharger Using IR Thermography;Clean Technologies;2022-04-28

4. Kombination von datenbasiertem Verbrennungsmodell und erweiterter Turbolader–Simulationsmethodik;Experten-Forum Powertrain: Ladungswechsel und Emissionierung 2020;2021

5. A Three-Dimensional Conjugate Heat Transfer Model of a Turbocharger Turbine Housing;Iranian Journal of Science and Technology, Transactions of Mechanical Engineering;2020-10-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3