A Novel Iterative Field Search Approach to Minimum Zone Circle for Roundness Error Estimation

Author:

Singh Deep1,Arunachalam N.1

Affiliation:

1. Indian Institute of Technology Madras Department of Mechanical Engineering, , Chennai, Tamil Nadu 600036 , India

Abstract

Abstract Roundness is one of the common attributes in the manufacturing industry. Roundness is the most prominent of the extant fundamental forms, as the majority of the fabricated components are round or cylindrical. The examination of roundness error associated with such features is critical since inadequate evaluation might result in the rejection of excellent parts. The performance of any equipment depends on the mating parts. Out-of-roundness components cause the inefficiency of such equipment’s system performance. As a result, roundness error assessment is critical for macro-sized specimens as well as for micro- and nano-sized components. The present article proposes a novel approach to Minimum Zone Circle (MZC) to evaluate the roundness error. An iterative field search methodology is used in the suggested approach. The proposed methodology evaluates the roundness error based on the generated discretized points within the search space and continues the same by decreasing the search space with an increase in the number of iterations to attain the Minimum Zone Error (MZE). The proposed algorithm has been tested with ten CMM (coordinate measuring machine) datasets and ten form datasets available in the literature studies and found to be excellent in comparison to the existing techniques. Further, the proposed methodology was also implemented to estimate the MZE of centerless ground specimens at multiple cross sections, and the roundness error obtained was lesser as compared to the LSC, MCC, and MIC. The number of generated discretized points is flexible and can be varied to reduce the number of iterations and computations. The recommended method is quite effective in assessing the roundness error when compared to the existing techniques. It also works well on data that was both evenly and unevenly spaced. The results suggest that altering the search field area for higher computing efficiency is straightforward, resilient, and versatile.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3