Damage Accumulation During Stress Relaxation of Polymer Films in Bending

Author:

Ingman D.1,Michlin Y.1

Affiliation:

1. Quality Assurance and Reliability, Technion-Israel Institute of Technology, Haifa, 32000 Israel

Abstract

A nonlinear viscoelastic damage accumulation model with a physical approach is presented with a view to describing stress relaxation in amorphous and partially crystalline polymers. The deformation is represented as stress-aided transition through a series of symmetrical energy barriers. There is also a stress threshold, introduced by the authors and representing an asymptotic residual stress below which relaxation does not occur. The model comprises three parameters: an activation volume, V; a product of several parameters with physical meaning, A (only the combination of A and V in the form of the relaxation time constant can be reconstructed from the present set of experiments); and the relaxation threshold. It allows a practically unlimited number of energy barriers. The damage depends on the stress history. Experimental data were collected on stress relaxation of three polymers at different temperatures. The experiments involved bending of a polymer strip within a metal cylinder and measurement of the radius of curvature after removal of the strip from the cylinder, using a specially-developed method. The measured radii ranged from infinity to 1.5 cm, and the obtained data were fitted to the model. The results show that the residual stress and other model parameters are temperature-dependent.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Viscoelastic Material Properties of SU-8 and Carbon-Nanotube-Reinforced SU-8 Materials;Electronic and Photonic Packaging, Electrical Systems Design and Photonics, and Nanotechnology;2006-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3