Comparative Study of Different Tube Geometries of Evacuated Tube Solar Collector

Author:

Sonowal Juri1,Bhowmik Mrinal1,Muthukumar P.23,Anandalakshmi R.4

Affiliation:

1. Indian Institute of Technology Guwahati School of Energy Science and Engineering, , Guwahati, Assam 781039 , India

2. Indian Institute of Technology Guwahati Department of Mechanical Engineering, , Guwahati, Assam 781039 , India ;

3. Indian Institute of Technology Tirupati Department of Mechanical Engineering, , Tirupati, Andhra Pradesh 517506 , India

4. Indian Institute of Technology Guwahati Department of Chemical Engineering, , Guwahati, Assam 781039 , India

Abstract

Abstract This study investigates the thermal performance of an evacuated U-tube solar collector (ETSC) using different tube geometrical configurations. The effect of tube geometry on the overall collector efficiency is numerically analyzed and compared with experimental results. Three different ETSC configurations made of copper viz., Model 1 (M1) having one inlet and two outlets, Model 2 (M2) having one inlet and three outlets, and Model 3 (M3) having one inlet and four outlets are considered. An overall rise in temperature of heat transfer fluid at the outlets for each model is predicted and compared with a conventional U-tube (CT) for different mass flowrates and solar insolations to evaluate the collector performance. In comparison with the CT, the outlet temperature of the M3 and M1 is higher by 46.2% and 40.3%, respectively. M2 gives a nearly similar fluid outlet temperature as M1. A maximum of 35.4% enhancement in heat gain compared to the CT is observed for M3 (which is best among modified configurations) under similar operating conditions. However, at 788 W/m2 solar insolation and a constant mass flowrate of 0.0167 kg/s, the estimated thermal efficiency of M1 is higher among the three models which is 33.5% higher than the CT. The experimental results closely approximate the numerical predictions with a deviation of ± 1.1 °C. From the economic evaluation of the modified collectors, a minimum payback period of 2.5 years was observed for Model 1 which is the shortest among the investigated ETSC systems.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3