Application of Metallic Nanoparticle Suspensions in Advanced Cooling Systems

Author:

Lee Shinpyo1,Choi Stephen U.-S.1

Affiliation:

1. Argonne National Laboratory

Abstract

Abstract One of the authors has proposed that an innovative new class of energy-efficient heat transfer fluids can be engineered by suspending nanometer-sized metallic particles (nanoparticles) in conventional heat transfer fluids. The resulting “nanofluids” are expected to exhibit much higher thermal conductivities than those of currently used heat transfer fluids and represent the best hope for high-performance cooling in next-generation cooling systems. In this study, the advanced cooling technology has been applied to cooling crystal silicon mirrors used in high-intensity X-ray sources such as Argonne’s Advanced Photon Source. Because the X-ray beam creates tremendous heat as it strikes the mirror, cooling rates of 2000–3000 W/cm2 must be achievable with the advanced technology. Analysis has been carried out to estimate the performance of microchannel heat exchangers with water, liquid nitrogen, and nanofluids as the working fluid. The design and optimization procedures for microchannel heat exchangers show the existence of an optimal channel width that minimizes the thermal resistance of a microchannel heat exchanger. For a pressure drop of 210 kPa (30 psi), the optimized channel width and depth are 56 μm and 360 μm for a water-cooled silicon heat sink and 39 μm and 1410 μm for a liquid-nitrogen-cooled silicon heat sink. For the optimized configuration, performance of the nanofluid-cooled microchannel heat exchanger has been compared with that of a water-cooled and liquid-nitrogen-cooled microchannel heat exchanger. The results show the superiority of a nanofluid-cooled microchannel heat exchanger. When nanofluids are used, the thermal resistances are reduced and the power densities are increased. Excellent thermal performance of a silicon microchannel heat exchanger has been demonstrated when nanofluids were used as the room temperature coolant.

Publisher

American Society of Mechanical Engineers

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3