Optimization of Enhanced Steam-Ejector Applied to Steam Jet Refrigeration

Author:

Kouremenos D. A.1,Rogdakis E. D.1,Alexis G. K.1

Affiliation:

1. National Technical University of Athens

Abstract

Abstract Ejectors are used for a wide range of applications. Refrigeration systems have, a long established history. Ejector refrigerators working on steam or halocarbon refrigerants provide a high level of flexibility. Ejector can also be used in solar-powered refrigeration systems and absorption-refrigeration systems. There are very few comprehensive theoretical studies even though several models for ejectors in literature. A new ejector theory was developed by Munday and Bagster (1977). This theory depends on the assumption of two discrete streams, the motive stream and the secondary stream. The two streams maintain their identity down the converging duct of the diffuser. At some section the secondary flow reaches sonic velocity. The shocking and mixing occur at the very end of the converging cone resulting in a transient supersonic mixed stream. There is no supersonic deceleration and a shock takes place immediately on mixing. The mixed stream will shock to the subsonic, found by the intersection of the Fanno and Rayleigh lines. After that the stream is brought to near zero velocity in the diffuser. In the present work this theory is used as a basis, in order to develop a computerized model of ejector with particular reference to steam-ejector at various operating conditions. The results are compared with available from the literature experimental data. Also a parametric study is conducted in order to reveal the influence of the various parameters on the performance of the steam jet refrigeration.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Thermodynamic Performance of a Miniature Expander/Compressor Heat-Actuated Heat Pump;2nd International Energy Conversion Engineering Conference;2004-08-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3