Evaluation of Optical Transmissivity of Transparent Materials on the Performance of Solar Flat Plate Collectors

Author:

Shaik Saboor1,Bhardwaj Manvendra1,Agarwal Somya1,Yendaluru Raja Sekhar2,Hasanuzzaman Md.3,Sharma K. V.4

Affiliation:

1. Department of Thermal and Energy Engineering, School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India

2. Centre for Disaster Mitigation and Management and Department of Thermal and Energy Engineering, School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India

3. Higher Institution Centre of Excellence (HICoE), UM Power Energy Dedicated Advanced Centre (UMPEDAC), Level 4, Wisma R&D UM, Jalan Pantai Baharu, 59990 Kuala Lumpur, Malaysia

4. Centre for Energy Studies, Department of Mechanical Engineering, JNTUH College of Engineering, JNTU Hyderabad, Kukatpally, Hyderabad 500085, India

Abstract

Abstract The energy gain of domestic solar water heating systems is determined by solar to thermal energy conversion and glazing optical efficiency. For this study, solar transmission properties of different transparent glazing materials such as acrylic, low-iron, medium-iron, and high-iron glasses were measured. The collector thermal efficiency under natural convection mode was compared for different transparent covers determined by numerical simulation using the Hottel–Whillier–Bliss equation. The low-iron glass (LiG-12 mm) has 16.3% and 20% higher thermal efficiency than medium- (MiG-12 mm) and high-iron glasses (HiG-12 mm), respectively, for a peak summer day. The effect of glass thickness on thermal performance is noteworthy in glasses than in acrylic glass sheets. Low-iron content glass with 6 mm thickness has the highest thermal and optical efficiency of 63.2% and 75.65%, respectively, for the collector optimum tilt for Vellore city in Tamil Nadu, India. The results are useful in the selection of glass covers for energy-efficient solar flat plate collectors.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3