Affiliation:
1. Department of Aeronautical and Automotive Engineering, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
Abstract
The paper focusses attention on alternative approaches for treating the coupling between the flow in the annulus supply ducts and the jets which enter combustor primary and dilution zones through air admission ports. Traditionally CFD predictions of combustor flows have modeled this in a very weakly coupled manner, with the port flow conditions being derived from 1D empirical correlations and used as boundary conditions for an internal-flow-only combustor CFD prediction. Recent work by the authors and others has introduced the viewpoint that fully coupled external-annulus–internal-combustor predictions is the way forward. Experimental data is gathered in the present work to quantify the strength of the interaction between annulus and core flows, which ultimately determines the jet characteristics at port exit. These data are then used to illustrate the improvement in the prediction of port exit jet characteristics which is obtained by adopting fully coupled calculations compared to the internal-flow-only approach. As a final demonstration of the importance of a fully coupled approach, isothermal calculations are presented for a single sector generic annular combustor. These show that quite different primary zone flow patterns are obtained from the two approaches, leading to considerable differences in the overall mixing pattern at combustor exit.
Subject
Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering
Reference13 articles.
1. Adkins, R. C. and Gueroui, D., 1986, “An Improved Method For Accurate Prediction Of Mass Flows Through Combustor Liner Holes,” ASME Paper 86-GT-149.
2. Karki, K. C., Oechsle, V. L., and Mongia, H. C., 1990, “A Computational Procedure For Diffuser-Combustor Flow Interaction Analysis,” ASME Paper 90-GT-35.
3. McGuirk, J. J., and Spencer, A., 1993, “CFD Modeling Of Annulus/Port Flows,” ASME Paper 93-GT-185.
4. McGuirk, J. J., and Spencer, A., 1995, “Computational Methods For Modelling Port Flows In Gas-Turbine Combustors,” ASME Paper 95-GT-414.
5. Manners, A. P., 1988, “The Calculation Of The Flows In Gas Turbine combustion Systems,” Ph.D. thesis, University of London.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献