Foreign Object Damage Behavior of a Silicon Carbide Fibrous Ceramic Composite

Author:

Kedir Nesredin1,Calvin Faucett D.2,Sanchez Luis2,Choi Sung R.2

Affiliation:

1. Naval Air Systems Command, Patuxent River, MD 20670 e-mail:

2. Naval Air Systems Command, Patuxent River, MD 20670

Abstract

The response of a silicon carbide (SiC) fibrous ceramic composite to foreign object damage (FOD) was determined at ambient temperature and velocities ranging from 40 to 150 m/s. Target specimens were impacted, at a normal incidence angle and in a partially supported configuration, using 1.59 mm diameter hardened steel ball projectiles. Qualitative analysis of the damage morphologies of targets and projectiles was made via scanning electron microscopy (SEM). In addition, the extent of impact damage was characterized by determining the post-impact strength of each target specimen as a function of impact velocity. Relative to the as-received (As-R) strength, the fibrous composite showed limited strength degradation due to impact with the maximum reduction of 17% occurring at 150 m/s. A quasi-static analysis of the impact force prediction was also made based on the principle of energy conservation and the results were verified via experimental data.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3