An Investigation Into the Dynamics of a Pipe Aspirating Fluid

Author:

Butt Muhammad Faisal Javed1,Paidoussis Michael P.1,Nahon Meyer1

Affiliation:

1. McGill University, Montreal, QC, Canada

Abstract

Pipes aspirating fluid have applications in the filling and recovery processes for underground caverns — large subterranean cavities used to store hydrocarbons, such as natural gas and oil. This paper deals with the dynamics of a vertical cantilevered flexible pipe, immersed in fluid. Fluid is aspirated from its bottom free end up to the fixed upper end. In this study, the working fluid is assumed to be water. An existing analytical model is used to predict the dynamical behaviour of the aspirating pipe. This model is then discretized with Galerkin’s method, using Euler-Bernoulli eigen-functions for cantilevered beam as comparison functions. Once solved, the model results show a unique kind of flutter comprising three regions, denoted regions 01–03. These regions are delineated by two critical flow velocities, Ucf1 and Ucf2. In addition, two frequencies of oscillation, f1 and f2, are found to characterize the aforementioned flutter. The dominant frequency of oscillation changes from f1 to f2 as the flow velocity is increased from approximately 3 to 6 m/s — a frequency exchange phenomenon observed and reported here for the first time for this system. The analytical/numerical study was followed by a corresponding experimental study. Experiments were performed on a flexible (Silastic) pipe that was completely submerged in water. The behaviour observed experimentally was similar to the numerical study, as the aspirating fluid velocity was increased from zero to 7 m/s.

Publisher

American Society of Mechanical Engineers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3