Empowering Graduate Engineering Students With Proficiency in Autonomy

Author:

Raman Adhiti T.1,Krovi Venkat N.1,Schmid Matthias J. A.1

Affiliation:

1. Clemson University International Center for Automotive Research, Greenville, SC

Abstract

A new class of distributed, autonomous systems is emerging, capable of exploiting multimodal distributed and networked spatial and temporal data (at significantly larger scales). A renaissance autonomy engineer requires proficiency in both traditional engineering concepts as well as a systems engineering skillset for implementing the ensuing complex systems. In this paper, we describe goals, development and first offering of a scaffolded course: “AuE 893 Autonomy: Science and Systems” to begin addressing this goal. Geared towards graduate engineering students, with limited prior exposure, the course complements the concepts from traditional courses (on mobile-robotics) with experiential hands-on system-integration efforts (building on the F1tenth.org kits). The staged course structure initially builds upon open-source Robotics Operating System (ROS) tutorials on simulated systems (Gazebo/RViz) with networked communication; Hardware-in-the-loop realization (with a Turtlebot platform) then aids the exploration (and reinforcement) of autonomy concepts. The course culminates in a final-project comprising performance testing with student-team integrated scaled Autonomous Remote Control cars (based on the F1tenth.org parts-list). All three student teams were successful in navigating around a closed racecourse at speeds of 10–15 miles per hour, using Simultaneous Localization and Mapping (SLAM) for situational awareness and obstacle-avoidance. We conclude with discussion of lessons-learnt and opportunities for future improvement.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hybrid Reinforcement Learning based controller for autonomous navigation;2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring);2022-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3