Data Driven Modeling and Optimization for Energy Efficiency in Additive Manufacturing Process With Geometric Accuracy Consideration

Author:

Ma Junfeng1,Tian Wenmeng1,Alizadeh Morteza1

Affiliation:

1. Mississippi State University, Mississippi State, MS

Abstract

Despite of its tremendous merits in producing parts with complex geometry and functionally graded materials, additive manufacturing (AM) is inherently an energy expensive process. Prior studies have shown that process parameters, such as printing resolution, printing speed, and printing temperature, are correlated to energy consumption per part. Moreover, part geometric accuracy is another major focus in AM research, and extensive studies have shown that the geometric accuracy of final parts is highly dependent on those process parameters as well. Though both energy consumption and part geometric accuracy heavily depend on the process parameters in AM processes, jointly considering the dual outputs in AM process is not fully investigated. The proposed study aims to obtain a quantitative understanding of the impact of these process parameters on AM energy consumption given part quality requirements, such as geometric accuracy. The study utilizes a MakerGear M2 fused deposition modeling (FDM) 3D printer to complete the designed experiments. By implementing experimental design and statistical regression analysis technologies, the study quantifies the correlation between AM process parameters and energy consumption as well as the final geometric accuracy measure. An optimization framework is proposed to minimize the energy consumption per part. The Kuhn-Tucker non-linear optimization algorithm is used to identify the optimal process parameters. This study is of significance to AM energy consumption in terms of jointly considering energy consumption and final part geometric accuracy in the optimization framework.

Publisher

American Society of Mechanical Engineers

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3