Experimental Investigation on Additively Manufactured Transpiration and Film Cooling Structures

Author:

Min Zheng1,Huang Gan2,Parbat Sarwesh Narayan1,Yang Li3,Chyu Minking K.1

Affiliation:

1. Department of Mechanical Engineering and Material Science, University of Pittsburgh, Pittsburgh, PA 15261

2. Department of Thermal Engineering, Tsinghua University, Beijing 10084, China

3. Department of Mechanical Engineering and Material Science, University of Pittsburgh, Pittsburgh, PA 15261 e-mail:

Abstract

The last 50 years has witnessed significant improvement in film cooling technologies while transpiration cooling is still not implemented in turbine airfoil cooling. Although transpiration cooling could provide higher cooling efficiency with less coolant consumption compared to film cooling, the fine pore structure and high porosity in transpiration cooling metal media always raised difficulties in conventional manufacturing. Recently, the rapid development of additive manufacturing (AM) has provided a new perspective to address such challenge. With the capability of the innovative powder bed selective laser metal sintering (SLMS) AM technology, the complex geometries of transpiration cooling part could be precisely fabricated and endued with improved mechanical strength. This study utilized the SLMS AM technology to fabricate the transpiration cooling and film cooling structures with Inconel 718 superalloy. Five different types of porous media including two perforated plates with different hole pitches, metal sphere packing, metal wire mesh, and blood vessel shaped passages for transpiration cooling were fabricated by EOS M290 system. One laidback fan-shaped film cooling coupon was also fabricated with the same printing process as the control group. Heat transfer tests under three different coolant mass flow rates and four different mainstream temperatures were conducted to evaluate the cooling performance of the printed coupons. The effects of geometry parameters including porosity, surface outlet area ratio, and internal solid–fluid interface area ratio were investigated as well. The results showed that the transpiration cooling structures generally had higher cooling effectiveness than film cooling structure. The overall average cooling effectiveness of blood vessel-shaped transpiration cooling reached 0.35, 0.5, and 0.57, respectively, with low (1.2%), medium (2.4%), and high (3.6%) coolant injection ratios. The morphological parameters analysis showed the major factor that affected the cooling effectiveness most was the internal solid–fluid interface area ratio for transpiration cooling. This study showed that additive manufactured transpiration cooling could be a promising alternative method for turbine blade cooling and worthwhile for further investigations.

Publisher

ASME International

Subject

Mechanical Engineering

Reference31 articles.

1. Bunker, R. S., 2017, “Evolution of Turbine Cooling,” ASME Paper No. GT2017-63205.10.1115/GT2017-63205

2. Bunker, R. S., 2013, “Turbine Heat Transfer and Cooling: An Overview,” ASME Paper No. GT2013-94174.10.1115/GT2013-94174

3. Recent Studies in Turbine Blade Internal Cooling;Heat Transfer Res.,2010

4. Effects of Hole Geometry and Density on Three-Dimensional Film Cooling;Int. J. Heat Mass Transfer,1974

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3