Fretting-Fatigue Damage-Factor Determination

Author:

Collins J. A.1

Affiliation:

1. Department of Mechanical Engineering, Arizona State University, Tempe, Ariz.

Abstract

Small-amplitude cyclic sliding motion at the interface between two solid bodies pressed together by a normal force initiates microcracks which propagate and cause premature fatigue failure. This action is defined to be fretting-fatigue. A quantitative evaluation of fretting-fatigue damage would be of great value to the mechanical engineering designer. It is proposed that a fretting-fatigue damage-factor could be developed to provide a quantitative index to fretting-fatigue damage. The damage-factor proposed is a function of eight basic fretting-fatigue parameters. Experimental tests were conducted to establish quantitative values for the fretting-fatigue damage-factor for a few specific sets of fretting-fatigue conditions. An unexpected trend in the value of the fretting-fatigue damage-factor was observed for the case of static stress in the specimen during fretting. With a static tensile stress in the specimen during fretting, the fretting-fatigue damage, as measured by reduction in fatigue limit, was very slight, while with a static compressive stress in the specimen during fretting, the fretting-fatigue damage was very great. A tentative explanation is presented.

Publisher

ASME International

Subject

General Medicine

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3