Experimental Study of Bubble Motion in Mercury With and Without a Magnetic Field

Author:

Mori Y.1,Hijikata K.1,Kuriyama I.1

Affiliation:

1. Department of Physical Engineering, Tokyo Institute of Technology, Meguro, Tokyo, Japan

Abstract

The behavior and hydrodynamical performance of a single bubble rising through mercury with and without magnetic field has been studied experimentally. A new method to measure the rise velocity and the shape of bubble with an electrical triple probe is proposed. When there is no magnetic field, a bubble changes its shape from spherical to elliptic and then to a spherical cap shape, as its equivalent radius Rm changes from 0.1 to 3 mm. The experimental results are found to agree well with the theories reported so far. In the case of a magnetic field, it is found that the effect of intensity of magnetic field B on the rise velocity depends largely on the radius of a bubble. When Rm = 3 mm, the rise velocity decreases monotonically with the increase of B. However, when Rm = 1 mm, the rise velocity increases once but it then starts to decrease afterwards with the increase of B.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3