Endometrial Thermal Balloon Ablation Using a High Temperature, Pulsed System: A Mathematical Model

Author:

Reinders Daniel M.1,Baldwin Susan A.1,Bert Joel L.1

Affiliation:

1. Department of Chemical and Biological Engineering, University of British Columbia, 2216 Main Mall, Vancouver, B.C. V6T 1Z4, Canada

Abstract

A new endometrial thermal balloon ablation treatment for menorrhagia is modeled mathematically to predict its efficacy and safety. A device preheats a fluid to 173°C within a reservoir external to the uterus, and then pulses this fluid without further heating between the reservoir and the balloon for 2.1 min of treatment time. The model predicted this treatment to result in consistent immediate tissue death (coagulation) depths of 3.4±0.1 mm for uterine cavities of 7 to 26 mL, and that eventual necrosis (tissue death that would occur 1–5 days post burn) may occur to depths of 6.5±0.2 mm. Whereas, burn depths varied with uterine cavity volume when a low temperature treatment (constant 75°C for 15 min) was modeled (2.3–2.9 mm and 6.8–8.2 mm, for immediate tissue death and eventual necrosis respectively). Similarly, the high temperature, pulsed treatment was less sensitive to blood perfusion rate than the low temperature treatment. Predicted eventual necrosis depth was 1.5 mm less for the high temperature, pulsed treatment than that predicted for a low temperature treatment (constant 87°C for 7 min) for the same immediate tissue death depth (3.5 mm), indicating that the new high temperature treatment may result in less damage to non targeted tissues.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3