Breaking Wave Interaction With a Group of Four Vertical Slender Cylinders in Two Square Arrangements

Author:

Alagan Chella Mayilvahanan1,Bihs Hans1,Kamath Arun1,Myrhaug Dag2,Arntsen Øivind Asgeir1

Affiliation:

1. Department of Civil and Environmental Engineering, Norwegian University of Science and Technology, Trondheim 7491, Norway e-mail:

2. Department of Marine Technology, Norwegian University of Science and Technology, Trondheim 7491, Norway e-mail:

Abstract

The main purpose of the study is to investigate the breaking wave interaction with a group of four circular cylinders. The physical process of wave breaking involves many parameters, and an accurate numerical modeling of breaking waves and the interaction with a structure remain a challenge. In the present study, the open-source computational fluid dynamics (CFD) model REEF3D is used to simulate the breaking wave interaction with multiple cylinders. The numerical model is based on the incompressible Reynolds-averaged Navier–Stokes (RANS) equations, the level set method for the free surface, and the k–ω model for turbulence. The numerical model is validated with experimental data of large-scale experiments for the free surface elevation and the breaking wave force on a single cylinder. A good agreement is obtained between the numerical results and experimental data. Two different configurations with four cylinders are examined: in-line square configuration and diamond square configuration. For both configurations, three different tank widths and four different spacings between the cylinders are investigated. The breaking wave forces on each cylinder in the group are computed for each case for the two configurations, and the results are compared with the breaking wave force on a single isolated cylinder. Furthermore, the study investigates the water surface elevations and the free surface flow features around the cylinders. For the closely spaced cylinders in a relatively narrower tank, the cylinders in both configurations experience the maximum forces lower than the maximum force on a single cylinder. But for the widely spaced cylinder in a relatively wider tank, the forces are higher and lower for the upstream cylinders and downstream cylinders, respectively, than the maximum force on a single isolated cylinder. The results of the present study show that the interference effects from the neighboring cylinders in a group strongly influence the kinematics around and the breaking wave forces on them.

Funder

Norges Forskningsråd

Publisher

ASME International

Subject

Mechanical Engineering,Ocean Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3