A Theoretical Analysis of Breakaway Friction Measurement

Author:

Li Yufeng1,Menon Aric Kumaran1

Affiliation:

1. Seagate Technology, 8001 E. Bloomington Freeway, Bloomington, MN 55420

Abstract

The transient response of an I-beam friction measurement system to a constant disk acceleration is theoretically analyzed. The friction measurement system is modeled as a single-degree-of-freedom system. It is found that the true breakaway friction is different from the measured breakaway friction, and that the true breakaway time is also different from the measured breakaway time. The system measurement error is evaluated as a function of the acceleration, the effective mass, the spring stiffness, as well as the static and kinetic coefficients of friction. A closed-form dimensionless solution is derived for the system measurement error. If the dynamic effect of the measurement system can be neglected by selecting an appropriate effective mass and acceleration, the maximum possible discretization error can be estimated as a dimensionless function of the discretization frequency, the breakaway friction, the spring stiffness, and the acceleration.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3