Development of an Engine Representative Combustor Simulator Dedicated to Hot Streak Generation

Author:

Koupper Charlie1,Caciolli Gianluca2,Gicquel Laurent3,Duchaine Florent3,Bonneau Guillaume4,Tarchi Lorenzo5,Facchini Bruno5

Affiliation:

1. Turbomeca, Bordes 64510, France e-mail:

2. Department of Industrial Engineering, University of Florence, Florence 50139, Italy e-mail:

3. CFD Team, CERFACS, Toulouse 31057, France

4. Turbomeca, Bordes 64510, France

5. Department of Industrial Engineering, University of Florence, Florence 50139, Italy

Abstract

Nowadays, the lack of confidence in the prediction of combustor-turbine interactions and more specifically our ability to predict the migration of hot spots through this interface leads to the application of extra safety margins, which are detrimental to an optimized turbine design and efficiency. To understand the physics and flow at this interface, a full 360 deg nonreactive combustor simulator (CS) representative of a recent lean burn chamber together with a 1.5 turbine stage is instrumented at DLR in Gottingen (Germany) within the European project FACTOR. The chamber operates with axial swirlers especially designed to reproduce engine-realistic velocity and temperature distortion profiles, allowing the investigation of the hot streaks transport through the high pressure (HP) stage. First, a true scale three injector annular sector of the CS without turbine is assembled and tested at the University of Florence. To generate the hot steaks, the swirlers are fed by an air flow at 531 K, while the liners are cooled by an effusion system fed with air at ambient temperature. In addition to static pressure taps and thermocouples, the test rig will be equipped with an automatic traverse system which allows detailed measurements at the combustor exit by means of a 5-hole probe, a thermocouple, and hot wire anemometers. This paper presents the design process and instrumentation of the trisector CS, with a special focus on large Eddy simulations (LES) which were widely used to validate the design choices. It was indeed decided to take advantage of the ability and maturity of LES to properly capture turbulence and mixing within combustion chambers, despite an increased computational cost as compared to usual Reynolds averaged Navier Stokes (RANS) approaches. For preliminary design, simulations of a single periodic sector (representative of the DLR full annular rig) are compared to simulations of the trisector test rig, showing no difference on the central swirler predictions, comforting the choice for the trisector. In parallel, to allow hot wire anemometry (HWA) measurements, the selection of an isothermal operating point, representative of the nominal point, is assessed and validated by use of LES.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3