Modeling of Thin-Film Single and Multilayer Nanosecond Pulsed Laser Processing

Author:

Lutey Adrian H. A.1

Affiliation:

1. Dipartimento di Ingegneria Industriale, Università di Bologna, Bologna 40126, Italy e-mail:

Abstract

A complete model of nanosecond pulsed laser scribing of arbitrary thin multilayer structures is presented. The chain of events is separated according to time-scale; an initial simulation considers material response during the pulse; another combines this result with the much slower effects of heat flow away from the laser axis. The former considers heating, vaporization and phase explosion of metals in the course of a single pulse, accounting for variations in thermal conductivity and optical absorption as the material becomes superheated and approaches its critical temperature. The latter calculates the bidimensional heat flow in a complete multilayer structure over the course of a scribing operation, combining material properties and considering removal by both short-pulse ablation and long-term heating of the work piece. Simulation results for the single pulse ablation of an aluminum target align well with published experimental data both in terms of phase-explosion threshold and ablation depth as a function of fluence. Bidimensional heat flow simulations of a polypropylene–aluminum–polypropylene triplex structure reveal the progression of events toward steady state behavior; aluminum ejected due to short-pulse ablation and plastic removed due to conduction.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Reference48 articles.

1. Selleri, S., Cucinotta, A., Poli, F., and Passaro, D., 2009, “High Brilliance Fiber Lasers for the Scribing of Photovoltaic Modules,” Transparent Optical Networks (ICTON), No. 11, pp. 1–4.

2. Explosive Phase Transformation in Excimer Laser Ablation;Appl. Surf. Sci.,1998

3. Phase Explosion in Laser-Pulsed Metal Films;Appl. Surf. Sci.,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3