The Interaction Between Steep Waves and a Vertical, Surface-Piercing Column

Author:

Sheikh Rizwan1,Swan Chris2

Affiliation:

1. Noble Denton Europe, Ltd, Noble House, 39 Tabernacle Street, London, EC2A 4AA

2. Department of Civil & Environmental Engineering, Imperial College London, South Kensington, London, SW7 2AZ

Abstract

This paper describes new laboratory observations concerning the interaction between a series of steep incident waves and a vertical, surface-piercing, column. The motivation for the study arose as a result of wave impact damage sustained to the undersides of several concrete gravity-based structures in the northern North Sea. Earlier work, [Swan et al. Appl. Ocean. Res. 19, pp. 309–327 (1997)], demonstrated that in the case of multiple column structures, the individual diameters of which lie outside the typical (linear) diffraction regime, there exists a new and previously unexpected mechanism leading to the scattering of high-frequency waves. Although the implications of this effect was carefully documented, not least because it explained the occurrence of wave impacts in relatively moderate seas, its physical origins remained unclear. In particular, it was uncertain whether this type of scattering would be observed in the case of a single column, or whether it results from the transmission of wave modes trapped between the legs of a multiple column structure. In the case of a single column, if the diameter, D, is such that the flow lies within the drag-inertia regime, D/λ<0.2, where λ is the corresponding wavelength, linear diffraction theory suggests there will be little or no scattered wave energy. The present laboratory observations demonstrate that this is not, in fact, the case. If the incident waves are steep, a strong and apparently localized interaction is clearly observed at the water surface. This, in turn, leads to the scattering of high-frequency waves. Although these waves are relatively small in amplitude, their subsequent interaction with other steep incident waves takes the form of a classic long-wave short-wave interaction and can produce a significant increase in the maximum crest elevation relative to those recorded in the absence of the structure. The present paper will demonstrate that the scattering of these high-frequency waves, and their subsequent nonlinear interaction with other incident waves, has significant implications for the specification of an effective air-gap and hence for the setting of deck elevations.

Publisher

ASME International

Subject

Mechanical Engineering,Ocean Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3