Improvement of Aerodynamic Performance of Cambered Airfoils Using Leading-Edge Slots

Author:

Beyhaghi Saman1,Amano Ryoichi S.2

Affiliation:

1. Department of Mechanical Engineering, University of Wisconsin-Milwaukee, 3200 N. Cramer Street, Milwaukee, WI 53211 e-mail:

2. Fellow ASME Department of Mechanical Engineering, University of Wisconsin-Milwaukee, 3200 N. Cramer Street, Milwaukee, WI 53211 e-mail:

Abstract

Feasibility of increasing lift and decreasing drag by drilling narrow span-wide channels near the leading edge of NACA 4412 airfoils is investigated. It is proposed to drill two-segment slots that allow some of the incoming air to flow through them and then exit from the bottom surface of the airfoil. Such slots can result in an increased local pressure and thereby higher lift. Length, width, inlet angle, and exit angle of slots are varied to determine optimum configurations. Aerodynamic performance at different angles of attack (AoAs) and the chord-based Reynolds number of 1.6 × 106 is investigated. It is concluded that longer and narrower slots with exit streams more aligned with the air flowing below the airfoil can result in a higher lift. Also, in order to keep the slotted airfoils beneficial for AoAs greater than zero, it is proposed to (a) slightly lower the slot position with respect to the original design and (b) tilt up the first-leg by a few degrees. For the best design case considered, an average improvement of 8% is observed for lift coefficient over the entire range of AoA (with the maximum increase of 15% for AoA = 0), without any significant drag penalty.

Funder

National Science Foundation

U.S. Department of Energy

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3