Computational Simulation of Temperature Elevations in Tumors Using Monte Carlo Method and Comparison to Experimental Measurements in Laser Photothermal Therapy

Author:

Manuchehrabadi Navid,Chen Yonghui,LeBrun Alexander,Ma Ronghui,Zhu Liang1

Affiliation:

1. e-mail:  Department of Mechanical Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250

Abstract

Accurate simulation of temperature distribution in tumors induced by gold nanorods during laser photothermal therapy relies on precise measurements of thermal, optical, and physiological properties of the tumor with or without nanorods present. In this study, a computational Monte Carlo simulation algorithm is developed to simulate photon propagation in a spherical tumor to calculate laser energy absorption in the tumor and examine the effects of the absorption (μa) and scattering (μs) coefficients of tumors on the generated heating pattern in the tumor. The laser-generated energy deposition distribution is then incorporated into a 3D finite-element model of prostatic tumors embedded in a mouse body to simulate temperature elevations during laser photothermal therapy using gold nanorods. The simulated temperature elevations are compared with measured temperatures in PC3 prostatic tumors in our previous in vivo experimental studies to extract the optical properties of PC3 tumors containing different concentrations of gold nanorods. It has been shown that the total laser energy deposited in the tumor is dominated by μa, while both μa and μs shift the distribution of the energy deposition in the tumor. Three sets of μa and μs are extracted, representing the corresponding optical properties of PC3 tumors containing different concentrations of nanorods to laser irradiance at 808 nm wavelength. With the injection of 0.1 cc of a 250 optical density (OD) nanorod solution, the total laser energy absorption rate is increased by 30% from the case of injecting 0.1 cc of a 50 OD nanorod solution, and by 125% from the control case without nanorod injection. Based on the simulated temperature elevations in the tumor, it is likely that after heating for 15 min, permanent thermal damage occurs in the tumor injected with the 250 OD nanorod solution, while thermal damage to the control tumor and the one injected with the 50 OD nanorod solution may be incomplete.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3