A Numerical Investigation of the Constant-Velocity Volute Design Approach as Applied to the Single Blade Impeller Pump

Author:

de Souza Brian1,Niven Andrew1,McEvoy Richard1

Affiliation:

1. Department of Mechanical and Aeronautical Engineering, John Holland Research Centre, University of Limerick, Castletroy, Co. Limerick 98040, Ireland

Abstract

This contribution addresses volute design as applied to single-blade-impeller pumps. Traditionally, volute design for multiblade impeller pumps has been carried out using either the constant-velocity or constant-swirl methodologies. Here, the constant velocity approach was investigated in order to determine whether or not it was appropriate for single-blade-impeller pumps, and whether the theoretical formulation would agree with numerically calculated data. In a numerical approach, three volutes were designed of the constant velocity type with design velocities of 0.8, 1.0, and 1.20 Cref. The performance of all three volutes was calculated using transient, three-dimensional, viscous numerical simulations, using the commercially available ANSYS CFX-11.0 code, over a range of flowrates 0.55<Qd<1.44. Analysis of the velocity distributions within the volutes was carried out by means of equispaced radially distributed planes on which the average circumferential velocity was calculated over full impeller rotations. The development of the initial constant velocity volute design (1.0 Cref) required the use of a somewhat arbitrary setting of the recirculation mass flowrate Qrc=0.35Qd. However in subsequent designs, a new iterative approach was developed, in which the velocity and mass flow distribution results from the numerical simulations were looped back into the design procedure, and an updated recirculation mass flowrate was obtained. These steps were then repeated until the desired constant velocity volute designs were obtained. The results of the investigation confirmed the strongly transient velocity pressure pulsation generated by the single blade impeller. When analyzed using average velocity measurements across an entire impeller revolution, clear agreement was seen between the velocity distributions predicted theoretically and calculated numerically for each of the constant velocity volutes. As expected, at flowrates above the dutypoint, the flow was seen to accelerate through the volute in all cases, while below the dutypoint, decelerating flow was observed. Examination of the hydraulic performance curves showed that an increase in the volute constant velocity design value led to a steeper head-flow curve. Further, increasing the design velocity provided for a higher overall hydraulic efficiency and a more peaked efficiency-flow curve.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pulp pumping efficiency II – Designing of a pulp pump;Nordic Pulp & Paper Research Journal;2021-03-04

2. Influence of blade inlet angle on the performance of a single blade centrifugal pump;Engineering Applications of Computational Fluid Mechanics;2021-01-01

3. The influence of the impeller construction on the performance of one channel pump;Journal of Physics: Conference Series;2021-01-01

4. Influence of different volute casings theoretical methods design on pump working processes;Journal of Physics: Conference Series;2021-01-01

5. Pressure and Flow Rate Fluctuations in Single- and Two-Blade Pumps;Journal of Fluids Engineering;2020-10-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3