Looping Dynamic Characteristics of a Pump-Turbine in the S-shaped Region During Runaway

Author:

Zhang Xiaoxi1,Cheng Yongguang1,Xia Linsheng1,Yang Jiandong1,Qian Zhongdong1

Affiliation:

1. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China e-mail:

Abstract

During transients, hydroturbines may demonstrate some dynamic characteristics that differ from the corresponding static characteristics in steady operating conditions. To study the dynamic characteristics of a pump-turbine, we simulated the runaway transients in a model pumped-storage plant by coupling one-dimensional (1D) water conveyance system and three-dimensional (3D) pump-turbine. The results show that the runaway dynamic trajectories form loops in the S-shaped region in the unit discharge and unit torque charts of the pump-turbine, not following the corresponding static characteristics. Theoretical analysis and flow patterns comparisons illustrate that the looping trajectories are mainly caused by the successive features of transient flow patterns, namely, the transient flows in the pump-turbine are influenced by their previous status. These features induce different performances between similar dynamic operating points in different moving directions. Furthermore, through comparing the transient parameters calculated by the dynamic and static characteristics separately, we found that both methods are available to capture the unstable behaviors of the pump-turbine, but the dynamic method displays more accurate results when simulating the critical transient parameters. Therefore, in practical engineering applications, we suggest to use the static characteristics method for stability analysis while dynamic characteristics method for transient parameters, which is important for optimizing the layout of water conveyance systems.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3