Study of Transient Coupled Thermoelastic Problems With Relaxation Times

Author:

Chen Han-Taw1,Lin Hou-Jee1

Affiliation:

1. Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan 701, Republic of China

Abstract

A new hybrid numerical method based on the Laplace transform and control volume methods is proposed to analyze transient coupled thermoelastic problems with relaxation times involving a nonlinear radiation boundary condition. The dynamic thermoelastic model of Green and Lindsay is selected for the present study. The following computational procedure is followed for the solution of the present problem. The nonlinear term in the boundary condition is linearized by using the Taylor’s series approximation. Afterward, the time-dependent terms in the linearized equations are removed by the Laplace transform technique, and then the transformed field equations are discretized using the control volume method with suitable shape functions. The nodal dimensionless temperature and displacement in the transform domain are inverted to obtain the actual physical quantities, using the numerical inversion of the Laplace transform method. It is seen from various illustrative problems that the present method has good accuracy and efficiency in predicting the wave propagations of temperature, stress, and displacement. However, it should be noted that the distributions of temperature, stress, and displacement can experience steep jumps at their wavefronts. In the present study, the effects of the relaxation times on these thermoelastic waves are also investigated.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3