The Impact of Normal Magnetic Fields on Instability of Thermocapillary Convection in a Two-Layer Fluid System

Author:

Huang Hulin1,Zhou Xiaoming1

Affiliation:

1. Academy of Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P.R. China

Abstract

When a temperature gradient is imposed along a liquid-liquid interface, thermocapillary convection is driven by the surface tension gradient. Such flow occurs in many application processes, such as thin-film coating, metal casting, and crystal growth. In this paper, the effect of a normal magnetic field, which is perpendicular to the interface, on the instability of thermocapillary convection in a rectangular cavity with differentially heated sidewalls, filled with two viscous, immiscible, incompressible fluids, is studied under the absence of gravity. In the two-layer fluid system, the upper layer fluid is electrically nonconducting encapsulant B2O3, while the underlayer fluid is electrically conducting molten InP. The interface between the two fluids is assumed to be flat and nondeformable. The results show that the two-layer fluid system still experiences a wavelike state when the magnetic field strength Bz is less than 0.04 T. The wave period increases and the amplitude decreases with the increasing of magnetic field strength. However, the convective flow pattern becomes complicated with a variable period, while the perturbation begins to fall into oblivion as the magnetic field intensity is larger than 0.05 T. When Bz=0.1 T, the wavelike state does not occur, the thermocapillary convection instability is fully suppressed, and the unsteady convection is changed to a steady thermocapillary flow.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3