Fabrication of Optical Fiber Sensors Based on Femtosecond Laser Micro Machining

Author:

Zhou Fengfeng1,Jo Seunghwan1,Fu Xingyu1,Tsai Jung-Ting2,Jun Martin Byung-Guk1

Affiliation:

1. School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907

2. School of Materials Engineering, Purdue University, West Lafayette, IN 47907

Abstract

Abstract In this research, we proposed fabrication process of optical fiber sensors using femtosecond laser and their applications. A beam of femtosecond laser was focused by an objective lens in the optical fiber. By testing different conditions, a group of machining parameters was found that achieve a minimum machining resolution of 3.2 μm. To ablate the core of the optical fiber, which is buried deep inside the cladding, precisely, part of the cladding was removed to expose the core as close as possible to the air. By making a complex pattern to modify the optical path of the laser inside an optical fiber, a sensitivity of 942.8–1015.6 nm per refractive index unit (nm/RIU) was obtained for liquid refractive index sensing. For another sensor, a sensitivity of 1.38 × 105 nm/RIU was obtained, which is high enough to detect small amount of refractive index change of air. It is known to be the first time that we fabricated a complex microstructure in an optical fiber to modify the propagation of the light using femtosecond laser. This research shows the possibility of a complex modification of light in an optical fiber using laser machining.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Process Chemistry and Technology,Mechanics of Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fiber Optic Sensor for Smart Manufacturing;International Journal of Precision Engineering and Manufacturing-Smart Technology;2023-07-01

2. All Silica Micro-Fluidic Flow Injection Sensor System for Colorimetric Chemical Sensing;Sensors;2021-06-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3